Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 132
Filtrar
1.
J Proteome Res ; 23(2): 532-549, 2024 02 02.
Artigo em Inglês | MEDLINE | ID: mdl-38232391

RESUMO

Since 2010, the Human Proteome Project (HPP), the flagship initiative of the Human Proteome Organization (HUPO), has pursued two goals: (1) to credibly identify the protein parts list and (2) to make proteomics an integral part of multiomics studies of human health and disease. The HPP relies on international collaboration, data sharing, standardized reanalysis of MS data sets by PeptideAtlas and MassIVE-KB using HPP Guidelines for quality assurance, integration and curation of MS and non-MS protein data by neXtProt, plus extensive use of antibody profiling carried out by the Human Protein Atlas. According to the neXtProt release 2023-04-18, protein expression has now been credibly detected (PE1) for 18,397 of the 19,778 neXtProt predicted proteins coded in the human genome (93%). Of these PE1 proteins, 17,453 were detected with mass spectrometry (MS) in accordance with HPP Guidelines and 944 by a variety of non-MS methods. The number of neXtProt PE2, PE3, and PE4 missing proteins now stands at 1381. Achieving the unambiguous identification of 93% of predicted proteins encoded from across all chromosomes represents remarkable experimental progress on the Human Proteome parts list. Meanwhile, there are several categories of predicted proteins that have proved resistant to detection regardless of protein-based methods used. Additionally there are some PE1-4 proteins that probably should be reclassified to PE5, specifically 21 LINC entries and ∼30 HERV entries; these are being addressed in the present year. Applying proteomics in a wide array of biological and clinical studies ensures integration with other omics platforms as reported by the Biology and Disease-driven HPP teams and the antibody and pathology resource pillars. Current progress has positioned the HPP to transition to its Grand Challenge Project focused on determining the primary function(s) of every protein itself and in networks and pathways within the context of human health and disease.


Assuntos
Anticorpos , Proteoma , Humanos , Proteoma/genética , Proteoma/análise , Bases de Dados de Proteínas , Espectrometria de Massas/métodos , Proteômica/métodos
2.
Database (Oxford) ; 20232023 10 11.
Artigo em Inglês | MEDLINE | ID: mdl-37819683

RESUMO

In recent years, a huge amount of data on ncRNA interactions has been described in scientific papers and databases. Although considerable effort has been made to annotate the available knowledge in public repositories, there are still significant discrepancies in how different resources capture and interpret data on ncRNA functional and physical associations. In the present paper, we present a collection of microRNA-mRNA interactions annotated from the scientific literature following recognized standard criteria and focused on microRNAs, which regulate genes associated with rare diseases as a case study. The list of protein-coding genes with a known role in specific rare diseases was retrieved from the Genome England PanelApp, and associated microRNA-mRNA interactions were annotated in the IntAct database and compared with other datasets. RNAcentral identifiers were used for unambiguous, stable identification of ncRNAs. The information about the interaction was enhanced by a detailed description of the cell types and experimental conditions, providing a computer-interpretable summary of the published data, integrated with the huge amount of protein interactions already gathered in the database. Furthermore, for each interaction, the binding sites of the microRNA are precisely mapped on a well-defined mRNA transcript of the target gene. This information is crucial to conceive and design optimal microRNA mimics or inhibitors to interfere in vivo with a deregulated process. As these approaches become more feasible, high-quality, reliable networks of microRNA interactions are needed to help, for instance, in the selection of the best target to be inhibited and to predict potential secondary off-target effects. Database URL https://www.ebi.ac.uk/intact.


Assuntos
MicroRNAs , Humanos , MicroRNAs/genética , MicroRNAs/metabolismo , Doenças Raras/genética , RNA não Traduzido , Bases de Dados Factuais , RNA Mensageiro/genética
3.
Nat Methods ; 20(9): 1291-1303, 2023 09.
Artigo em Inglês | MEDLINE | ID: mdl-37400558

RESUMO

An unambiguous description of an experiment, and the subsequent biological observation, is vital for accurate data interpretation. Minimum information guidelines define the fundamental complement of data that can support an unambiguous conclusion based on experimental observations. We present the Minimum Information About Disorder Experiments (MIADE) guidelines to define the parameters required for the wider scientific community to understand the findings of an experiment studying the structural properties of intrinsically disordered regions (IDRs). MIADE guidelines provide recommendations for data producers to describe the results of their experiments at source, for curators to annotate experimental data to community resources and for database developers maintaining community resources to disseminate the data. The MIADE guidelines will improve the interpretability of experimental results for data consumers, facilitate direct data submission, simplify data curation, improve data exchange among repositories and standardize the dissemination of the key metadata on an IDR experiment by IDR data sources.


Assuntos
Proteínas Intrinsicamente Desordenadas , Proteínas Intrinsicamente Desordenadas/química , Conformação Proteica
4.
Curr Protoc ; 3(3): e700, 2023 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-36912607

RESUMO

The Universal Protein Resource (UniProt) is a comprehensive resource for protein sequence and annotation data. The UniProt website receives about 800,000 unique visitors per month and is the primary means to access UniProt. It provides 10 searchable datasets and four main tools. The key UniProt datasets are the UniProt Knowledgebase (UniProtKB), the UniProt Reference Clusters (UniRef), the UniProt Archive (UniParc), and protein sets for completely sequenced genomes (Proteomes). Other supporting datasets include information about proteins that is present in UniProtKB protein entries, such as literature citations, taxonomy, and subcellular locations, among others. This article focuses on how to use UniProt datasets. The first basic protocol describes navigation and searching mechanisms for the UniProt datasets, and two additional protocols build on the first protocol to describe advanced search and query building. © 2023 The Authors. Current Protocols published by Wiley Periodicals LLC. Basic Protocol 1: Searching UniProt datasets Basic Protocol 2: Advanced search and query building Basis Protocol 3: Adding parameters using advanced search.


Assuntos
Bases de Conhecimento , Proteoma , Bases de Dados de Proteínas , Sequência de Aminoácidos , Arquivos
5.
Curr Protoc ; 3(3): e697, 2023 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-36943033

RESUMO

The Universal Protein Resource (UniProt) is a comprehensive resource for protein sequence and annotation data (UniProt Consortium, 2023). The UniProt website receives about 800,000 unique visitors per month and is the primary means to access UniProt. Along with various datasets that you can search, UniProt provides four main tools. These are the "BLAST" tool for sequence similarity searching, the "Align" tool for multiple sequence alignment, the "Peptide Search" tool for retrieving proteins containing a short peptide sequence, and the "Retrieve/ID Mapping" tool for using a list of identifiers to retrieve UniProt Knowledgebase (UniProtKB) proteins and to convert database identifiers from UniProt to external databases or vice versa. This article provides four basic protocols and seven alternate protocols for using UniProt tools. © 2023 The Authors. Current Protocols published by Wiley Periodicals LLC. Basic Protocol 1: Basic local alignment search tool (BLAST) in UniProt Alternate Protocol 1: BLAST through UniProt text search results pages Alternate Protocol 2: BLAST through UniProt basket Basic Protocol 2: Multiple sequence alignment in UniProt Alternate Protocol 3: Align tool through UniProt results pages and entry pages Alternate Protocol 4: Align tool through UniProt basket Basic Protocol 3: Peptide search in UniProt Basic Protocol 4: Batch retrieval and ID mapping in UniProt Alternate Protocol 5: Retrieve/ID Mapping tool through UniProt text search results pages and BLAST and Align results pages Alternate Protocol 6: Retrieve/ID Mapping tool through UniProt basket Alternate Protocol 7: Retrieve/ID Mapping tool through UniProt search box.


Assuntos
Peptídeos , Software , Bases de Dados de Proteínas , Proteínas/metabolismo , Sequência de Aminoácidos
6.
Nat Genet ; 55(3): 389-398, 2023 03.
Artigo em Inglês | MEDLINE | ID: mdl-36823319

RESUMO

Interacting proteins tend to have similar functions, influencing the same organismal traits. Interaction networks can be used to expand the list of candidate trait-associated genes from genome-wide association studies. Here, we performed network-based expansion of trait-associated genes for 1,002 human traits showing that this recovers known disease genes or drug targets. The similarity of network expansion scores identifies groups of traits likely to share an underlying genetic and biological process. We identified 73 pleiotropic gene modules linked to multiple traits, enriched in genes involved in processes such as protein ubiquitination and RNA processing. In contrast to gene deletion studies, pleiotropy as defined here captures specifically multicellular-related processes. We show examples of modules linked to human diseases enriched in genes with known pathogenic variants that can be used to map targets of approved drugs for repurposing. Finally, we illustrate the use of network expansion scores to study genes at inflammatory bowel disease genome-wide association study loci, and implicate inflammatory bowel disease-relevant genes with strong functional and genetic support.


Assuntos
Biologia Celular , Células , Doença , Estudos de Associação Genética , Pleiotropia Genética , Estudos de Associação Genética/métodos , Humanos , Ubiquitinação/genética , Processamento Pós-Transcricional do RNA/genética , Células/metabolismo , Células/patologia , Reposicionamento de Medicamentos/métodos , Reposicionamento de Medicamentos/tendências , Doença/genética , Doenças Inflamatórias Intestinais/genética , Doenças Inflamatórias Intestinais/patologia , Estudo de Associação Genômica Ampla , Fenótipo , Doenças Autoimunes/genética , Doenças Autoimunes/patologia
7.
J Proteome Res ; 22(2): 287-301, 2023 02 03.
Artigo em Inglês | MEDLINE | ID: mdl-36626722

RESUMO

The Human Proteome Organization (HUPO) Proteomics Standards Initiative (PSI) has been successfully developing guidelines, data formats, and controlled vocabularies (CVs) for the proteomics community and other fields supported by mass spectrometry since its inception 20 years ago. Here we describe the general operation of the PSI, including its leadership, working groups, yearly workshops, and the document process by which proposals are thoroughly and publicly reviewed in order to be ratified as PSI standards. We briefly describe the current state of the many existing PSI standards, some of which remain the same as when originally developed, some of which have undergone subsequent revisions, and some of which have become obsolete. Then the set of proposals currently being developed are described, with an open call to the community for participation in the forging of the next generation of standards. Finally, we describe some synergies and collaborations with other organizations and look to the future in how the PSI will continue to promote the open sharing of data and thus accelerate the progress of the field of proteomics.


Assuntos
Proteoma , Proteômica , Humanos , Padrões de Referência , Vocabulário Controlado , Espectrometria de Massas , Bases de Dados de Proteínas
8.
Nucleic Acids Res ; 51(D1): D9-D17, 2023 01 06.
Artigo em Inglês | MEDLINE | ID: mdl-36477213

RESUMO

The European Molecular Biology Laboratory's European Bioinformatics Institute (EMBL-EBI) is one of the world's leading sources of public biomolecular data. Based at the Wellcome Genome Campus in Hinxton, UK, EMBL-EBI is one of six sites of the European Molecular Biology Laboratory (EMBL), Europe's only intergovernmental life sciences organisation. This overview summarises the status of services that EMBL-EBI data resources provide to scientific communities globally. The scale, openness, rich metadata and extensive curation of EMBL-EBI added-value databases makes them particularly well-suited as training sets for deep learning, machine learning and artificial intelligence applications, a selection of which are described here. The data resources at EMBL-EBI can catalyse such developments because they offer sustainable, high-quality data, collected in some cases over decades and made openly availability to any researcher, globally. Our aim is for EMBL-EBI data resources to keep providing the foundations for tools and research insights that transform fields across the life sciences.


Assuntos
Inteligência Artificial , Biologia Computacional , Gerenciamento de Dados , Bases de Dados Factuais , Genoma , Internet
9.
J Proteome Res ; 22(4): 1024-1042, 2023 04 07.
Artigo em Inglês | MEDLINE | ID: mdl-36318223

RESUMO

The 2022 Metrics of the Human Proteome from the HUPO Human Proteome Project (HPP) show that protein expression has now been credibly detected (neXtProt PE1 level) for 18 407 (93.2%) of the 19 750 predicted proteins coded in the human genome, a net gain of 50 since 2021 from data sets generated around the world and reanalyzed by the HPP. Conversely, the number of neXtProt PE2, PE3, and PE4 missing proteins has been reduced by 78 from 1421 to 1343. This represents continuing experimental progress on the human proteome parts list across all the chromosomes, as well as significant reclassifications. Meanwhile, applying proteomics in a vast array of biological and clinical studies continues to yield significant findings and growing integration with other omics platforms. We present highlights from the Chromosome-Centric HPP, Biology and Disease-driven HPP, and HPP Resource Pillars, compare features of mass spectrometry and Olink and Somalogic platforms, note the emergence of translation products from ribosome profiling of small open reading frames, and discuss the launch of the initial HPP Grand Challenge Project, "A Function for Each Protein".


Assuntos
Proteoma , Proteômica , Humanos , Proteoma/genética , Proteoma/análise , Bases de Dados de Proteínas , Espectrometria de Massas/métodos , Fases de Leitura Aberta , Proteômica/métodos
10.
Methods Mol Biol ; 2449: 27-42, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35507258

RESUMO

Molecular interaction databases aim to systematically capture and organize the experimental interaction information described in the scientific literature. These data can then be used to perform network analysis, to assign putative roles to uncharacterized proteins and to investigate their involvement in cellular pathways.This chapter gives a brief overview of publicly available molecular interaction databases and focuses on the members of the IMEx Consortium, on their curation policies and standard data formats. All of the goals achieved by IMEx databases over the last 15 years, the data types provided and the many different ways in which such data can be utilized by the research community, are described in detail. The IMEx databases curate molecular interaction data to the highest caliber, following a detailed curation model and supplying rich metadata by employing common curation rules and harmonized standards. The IMEx Consortium provides comprehensively annotated molecular interaction data integrated into a single, non-redundant, open access dataset.


Assuntos
Mapeamento de Interação de Proteínas , Proteínas , Gerenciamento de Dados , Bases de Dados de Compostos Químicos , Bases de Dados de Proteínas , Proteínas/metabolismo
11.
Nucleic Acids Res ; 50(D1): D578-D586, 2022 01 07.
Artigo em Inglês | MEDLINE | ID: mdl-34718729

RESUMO

The Complex Portal (www.ebi.ac.uk/complexportal) is a manually curated, encyclopaedic database of macromolecular complexes with known function from a range of model organisms. It summarizes complex composition, topology and function along with links to a large range of domain-specific resources (i.e. wwPDB, EMDB and Reactome). Since the last update in 2019, we have produced a first draft complexome for Escherichia coli, maintained and updated that of Saccharomyces cerevisiae, added over 40 coronavirus complexes and increased the human complexome to over 1100 complexes that include approximately 200 complexes that act as targets for viral proteins or are part of the immune system. The display of protein features in ComplexViewer has been improved and the participant table is now colour-coordinated with the nodes in ComplexViewer. Community collaboration has expanded, for example by contributing to an analysis of putative transcription cofactors and providing data accessible to semantic web tools through Wikidata which is now populated with manually curated Complex Portal content through a new bot. Our data license is now CC0 to encourage data reuse. Users are encouraged to get in touch, provide us with feedback and send curation requests through the 'Support' link.


Assuntos
Curadoria de Dados/métodos , Bases de Dados de Proteínas , Complexos Multiproteicos/química , Coronavirus/química , Visualização de Dados , Bases de Dados de Compostos Químicos , Enzimas/química , Enzimas/metabolismo , Escherichia coli/química , Humanos , Cooperação Internacional , Anotação de Sequência Molecular , Complexos Multiproteicos/metabolismo , Interface Usuário-Computador
12.
Biochim Biophys Acta Gene Regul Mech ; 1865(1): 194768, 2022 01.
Artigo em Inglês | MEDLINE | ID: mdl-34757206

RESUMO

As computational modeling becomes more essential to analyze and understand biological regulatory mechanisms, governance of the many databases and knowledge bases that support this domain is crucial to guarantee reliability and interoperability of resources. To address this, the COST Action Gene Regulation Ensemble Effort for the Knowledge Commons (GREEKC, CA15205, www.greekc.org) organized nine workshops in a four-year period, starting September 2016. The workshops brought together a wide range of experts from all over the world working on various steps in the knowledge management process that focuses on understanding gene regulatory mechanisms. The discussions between ontologists, curators, text miners, biologists, bioinformaticians, philosophers and computational scientists spawned a host of activities aimed to standardize and update existing knowledge management workflows and involve end-users in the process of designing the Gene Regulation Knowledge Commons (GRKC). Here the GREEKC consortium describes its main achievements in improving this GRKC.


Assuntos
Regulação da Expressão Gênica , Reprodutibilidade dos Testes
13.
Nucleic Acids Res ; 50(D1): D648-D653, 2022 01 07.
Artigo em Inglês | MEDLINE | ID: mdl-34761267

RESUMO

The IntAct molecular interaction database (https://www.ebi.ac.uk/intact) is a curated resource of molecular interactions, derived from the scientific literature and from direct data depositions. As of August 2021, IntAct provides more than one million binary interactions, curated by twelve global partners of the International Molecular Exchange consortium, for which the IntAct database provides a shared curation and dissemination platform. The IMEx curation policy has always emphasised a fine-grained data and curation model, aiming to capture the relevant experimental detail essential for the interpretation of the provided molecular interaction data. Here, we present recent curation focus and progress, as well as a completely redeveloped website which presents IntAct data in a much more user-friendly and detailed way.


Assuntos
Bases de Dados de Proteínas , Mapas de Interação de Proteínas/genética , Software , Humanos , Mapeamento de Interação de Proteínas/métodos
14.
FEBS J ; 289(19): 5875-5890, 2022 10.
Artigo em Inglês | MEDLINE | ID: mdl-34437766

RESUMO

Enzymes play essential roles in all life processes and are used extensively in the biomedical and biotechnological fields. However, enzyme-related information is spread across multiple resources making its retrieval time-consuming. In response to this challenge, the Enzyme Portal has been established to facilitate enzyme research, by providing a freely available hub where researchers can easily find and explore enzyme-related information. It integrates relevant enzyme data for a wide range of species from various resources such as UniProtKB, PDBe and ChEMBL. Here, we describe what type of enzyme-related data the Enzyme Portal provides, how the information is organized and, by show-casing two potential use cases, how to access and retrieve it.


Assuntos
Enzimas , Bases de Conhecimento
15.
Database (Oxford) ; 20212021 10 26.
Artigo em Inglês | MEDLINE | ID: mdl-34697638

RESUMO

The role of the blood-brain barrier (BBB) in Alzheimer's and other neurodegenerative diseases is still the subject of many studies. However, those studies using high-throughput methods have been compromised by the lack of Gene Ontology (GO) annotations describing the role of proteins in the normal function of the BBB. The GO Consortium provides a gold-standard bioinformatics resource used for analysis and interpretation of large biomedical data sets. However, the GO is also used by other research communities and, therefore, must meet a variety of demands on the breadth and depth of information that is provided. To meet the needs of the Alzheimer's research community we have focused on the GO annotation of the BBB, with over 100 transport or junctional proteins prioritized for annotation. This project has led to a substantial increase in the number of human proteins associated with BBB-relevant GO terms as well as more comprehensive annotation of these proteins in many other processes. Furthermore, data describing the microRNAs that regulate the expression of these priority proteins have also been curated. Thus, this project has increased both the breadth and depth of annotation for these prioritized BBB proteins. Database URLhttps://www.ebi.ac.uk/QuickGO/.


Assuntos
Doença de Alzheimer , Barreira Hematoencefálica , Doença de Alzheimer/genética , Biologia Computacional , Bases de Dados Genéticas , Ontologia Genética , Humanos , Anotação de Sequência Molecular
16.
Biochim Biophys Acta Gene Regul Mech ; 1864(10): 194749, 2021 10.
Artigo em Inglês | MEDLINE | ID: mdl-34425241

RESUMO

The domain of transcription regulation has been notoriously difficult to annotate in the Gene Ontology, partly because of the intricacies of gene regulation which involve molecular interactions with DNA as well as amongst protein complexes. The molecular function 'transcription coregulator activity' is a part of the biological process 'regulation of transcription, DNA-templated' that occurs in the cellular component 'chromatin'. It can mechanistically link sequence-specific DNA-binding transcription factor (dbTF) regulatory DNA target sites to coactivator and corepressor target sites through the molecular function 'cis-regulatory region sequence-specific DNA binding'. Many questions arise about transcription coregulators (coTF). Here, we asked how many unannotated, putative coregulators can be identified in protein complexes? Therefore, we mined the CORUM and hu.MAP protein complex databases with known and strongly presumed human transcription coregulators. In addition, we trawled the BioGRID and IntAct molecular interaction databases for interactors of the known 1457 human dbTFs annotated by the GREEKC and GO consortia. This yielded 1093 putative transcription factor coregulator complex subunits, of which 954 interact directly with a dbTF. This substantially expands the set of coTFs that could be annotated to 'transcription coregulator activity' and sets the stage for renewed annotation and wet-lab research efforts. To this end, we devised a prioritisation score based on existing GO annotations of already curated transcription coregulators as well as interactome representation. Since all the proteins that we mined are parts of protein complexes, we propose to concomitantly engage in annotation of the putative transcription coregulator-containing complexes in the Complex Portal database.


Assuntos
Proteínas de Ligação a DNA/metabolismo , Fatores de Transcrição/metabolismo , Sequência de Bases , DNA/química , Mineração de Dados , Bases de Dados Genéticas , Regulação da Expressão Gênica , Humanos , Mapeamento de Interação de Proteínas , Subunidades Proteicas/metabolismo , Transcrição Gênica
18.
Nucleic Acids Res ; 49(6): 3156-3167, 2021 04 06.
Artigo em Inglês | MEDLINE | ID: mdl-33677561

RESUMO

The EMBL-EBI Complex Portal is a knowledgebase of macromolecular complexes providing persistent stable identifiers. Entries are linked to literature evidence and provide details of complex membership, function, structure and complex-specific Gene Ontology annotations. Data are freely available and downloadable in HUPO-PSI community standards and missing entries can be requested for curation. In collaboration with Saccharomyces Genome Database and UniProt, the yeast complexome, a compendium of all known heteromeric assemblies from the model organism Saccharomyces cerevisiae, was curated. This expansion of knowledge and scope has led to a 50% increase in curated complexes compared to the previously published dataset, CYC2008. The yeast complexome is used as a reference resource for the analysis of complexes from large-scale experiments. Our analysis showed that genes coding for proteins in complexes tend to have more genetic interactions, are co-expressed with more genes, are more multifunctional, localize more often in the nucleus, and are more often involved in nucleic acid-related metabolic processes and processes where large machineries are the predominant functional drivers. A comparison to genetic interactions showed that about 40% of expanded co-complex pairs also have genetic interactions, suggesting strong functional links between complex members.


Assuntos
Proteínas de Saccharomyces cerevisiae/metabolismo , Saccharomyces cerevisiae/metabolismo , Conjuntos de Dados como Assunto , Ontologia Genética , Bases de Conhecimento , Saccharomyces cerevisiae/genética , Proteínas de Saccharomyces cerevisiae/genética
19.
Bioinformatics ; 36(24): 5712-5718, 2021 04 05.
Artigo em Inglês | MEDLINE | ID: mdl-32637990

RESUMO

MOTIVATION: A large variety of molecular interactions occurs between biomolecular components in cells. When a molecular interaction results in a regulatory effect, exerted by one component onto a downstream component, a so-called 'causal interaction' takes place. Causal interactions constitute the building blocks in our understanding of larger regulatory networks in cells. These causal interactions and the biological processes they enable (e.g. gene regulation) need to be described with a careful appreciation of the underlying molecular reactions. A proper description of this information enables archiving, sharing and reuse by humans and for automated computational processing. Various representations of causal relationships between biological components are currently used in a variety of resources. RESULTS: Here, we propose a checklist that accommodates current representations, called the Minimum Information about a Molecular Interaction CAusal STatement (MI2CAST). This checklist defines both the required core information, as well as a comprehensive set of other contextual details valuable to the end user and relevant for reusing and reproducing causal molecular interaction information. The MI2CAST checklist can be used as reporting guidelines when annotating and curating causal statements, while fostering uniformity and interoperability of the data across resources. AVAILABILITY AND IMPLEMENTATION: The checklist together with examples is accessible at https://github.com/MI2CAST/MI2CAST. SUPPLEMENTARY INFORMATION: Supplementary data are available at Bioinformatics online.


Assuntos
Software , Causalidade , Humanos
20.
Nat Commun ; 11(1): 6144, 2020 12 01.
Artigo em Inglês | MEDLINE | ID: mdl-33262342

RESUMO

The International Molecular Exchange (IMEx) Consortium provides scientists with a single body of experimentally verified protein interactions curated in rich contextual detail to an internationally agreed standard. In this update to the work of the IMEx Consortium, we discuss how this initiative has been working in practice, how it has ensured database sustainability, and how it is meeting emerging annotation challenges through the introduction of new interactor types and data formats. Additionally, we provide examples of how IMEx data are being used by biomedical researchers and integrated in other bioinformatic tools and resources.


Assuntos
Acesso à Informação , Bases de Dados Genéticas , Humanos , Disseminação de Informação , Cooperação Internacional
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...